Счетчик активной электрической энергии

трехфазный

CE 301M

тип корпуса S31, R33

Руководство по эксплуатации САНТ 411152.024РЭ

Предприятие-изготовитель: ЗАО "Энергомера" 355029, Россия, г. Ставрополь, ул. Ленина, 415 тел.: (8652) 35-75-27, факс: 56-66-90, Бесплатная горячая линия: 8-800-200-75-27 e-mail: concern@energomera.ru www.energomera.ru

СОДЕРЖАНИЕ

1 Требования безопасности	. 3
2 Описание счетчика и принципа его работы	. 3
3 Технические характеристики	
4 Подготовка счетчика к работе	. 9
5 Интерфейсы счетчиков	. 10
6 Сброс состояния электронной пломбы (для счетчиков исполнения «V»)	
7 Отображение информации на ЖКИ	. 11
8. Режимы индикации	
9 Поверка прибора	. 15
10 Техническое обслуживание	
	16
ПРИЛОЖЕНИЕ Б (обязательное) Габаритные и установочные размеры счетчиков	
ПРИЛОЖЕНИЕ В (обязательное) Маркировка схемы включения счетчиков	

Настоящее руководство по эксплуатации (в дальнейшем – РЭ) содержит описание принципа действия, а также сведения, необходимые для правильной эксплуатации счетчика активной электрической энергии трехфазного СЕ 301М (в дальнейшем – счетчика).

К работе со счетчиком допускаются лица, специально обученные для работы с напряжением до 1000 В и изучившие настоящее РЭ.

1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

По безопасности эксплуатации счетчики удовлетворяют требованиям безопасности по ГОСТ 22261-94 и ГОСТ Р 51350-99.

По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ Р 51350-99.

Монтаж и эксплуатацию счетчика необходимо вести в соответствии с действующими правилами технической эксплуатации электроустановок.

2 ОПИСАНИЕ СЧЕТЧИКА И ПРИНЦИПА ЕГО РАБОТЫ

Счетчик активной электрической энергии СЕ 301М является счетчиком непосредственного включения и предназначен для многотарифного учета активной электрической энергии в трехфазных четырехпроводных цепях переменного тока.

Счетчик может использоваться в автоматизированных информационно-измерительных системах коммерческого учета электроэнергии (АИИС КУЭ) для передачи измеренных или вычисленных параметров на диспетчерский пункт по контролю, учету и распределению электрической энергии.

Счетчик имеет электронный счетный механизм, осуществляющий учет электрической энергии по умолчанию непосредственно в киловатт-часах слева от запятой и в сотых долях киловатт-часа справа от запятой (два знака после запятой), с отображением информации на жидкокристаллическом индикаторе (далее – жки)

Структура условного обозначения счетчика приведена в приложении А.

Примечание – Далее по тексту применено обобщенное обозначение исполнений счетчика, например, «счетчик исполнения «А» обозначает все исполнения, в условном обозначении которых присутствует буква «А».

Возможные исполнения счетчиков для конкретного типа корпуса представлены на сайте www.energomera.ru в справочном документе «Дополнительные сведения о счётчиках серии СЕ 301М».

Счетчик подключается к трехфазной четырехпроводной сети переменного тока и устанавливается в местах, имеющих дополнительную защиту от влияния окружающей среды (помещения, щитки) с рабочими условиями применения:

- температура окружающего воздуха от минус 40 до плюс 70 °C;
- относительная влажность окружающего воздуха от 30 до 98 %;
- атмосферное давление от 70 до 106,7 кПа (537 800 мм рт.ст.);
- частота измерительной сети (50±2,5) Гц или (60±3) Гц;
- форма кривой напряжения и тока измерительной сети синусоидальная с коэффициентом несинусоидальности не более 12 %.

Примечание – При температурах ниже минус 30 °C допускается временное ухудшение работы ЖКИ счетчика (снижение контрастности, увеличение инерционности отображения информации) при сохранении остальных функций и характеристик счетчика. С повышением температуры работоспособность ЖКИ полностью восстанавливается.

З ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Счетчик удовлетворяет требованиям ГОСТ Р 52322-2005, ГОСТ Р 52320-2005.

Гарантированными считают технические характеристики, приводимые с допусками или предельными значениями. Значения величин без допусков являются справочными.

По устойчивости к климатическим воздействиям счетчик относится к группе 4 по ГОСТ 22261-94, с

расширенным диапазоном по температуре и влажности, удовлетворяющим исполнению Т категории 3 по ГОСТ 15150-69.

По устойчивости к механическим воздействиям счетчик относится к группе 2 по ГОСТ 22261-94.

Счетчик защищен от проникновения пыли и влаги. Степень защиты счетчика IP20 по ГОСТ 14254-96.

Счетчик прочен к одиночным ударам. Импульс полусинусоидальной волны длительностью 18 мс, максимальное ускорение 30 g (300 м/c^2).

Счетчик прочен к вибрации в диапазоне частот (10 – 150) Гц.

Счетчик невосприимчив к электростатическим разрядам напряжением до 8 кВ.

Счетчик устойчив к воздействию быстрых переходных всплесков напряжением до $4\,\mathrm{kB}$, длительностью до $50\,\mathrm{mkc}$.

Счетчик не генерирует проводимые или излучаемые помехи, которые могут воздействовать на работу другого оборудования.

По способности к подавлению индустриальных радиопомех счетчик соответствует требованиям ГОСТ Р 52320-2005.

Класс точности – 1 по ГОСТ Р 52322-2005.

Базовый (максимальный) ток – 5 (60) А или 10 (100) А в зависимости от исполнения.

Номинальное напряжение - 3×230/400 В.

Рабочий диапазон напряжений – от 70 до 115 % от номинального напряжения для счетчиков в корпусе R33 и от 75 до 115 % от номинального напряжения для счетчиков в корпусе S31.

Номинальная частота сети – $(50 \pm 2,5)$ Гц или (60 ± 3) Гц.

Постоянная счетчика – 600 имп./(кВт•ч) для счетчиков с базовым током 5 А или 400 имп./(кВт•ч) для счетчиков с базовым током 10 А.

Стартовый ток -0.02~A для счетчиков с базовым током 5~A или 0.04~A для счетчиков с базовым током 10~A.

Количество десятичных знаков ЖКИ – 8.

Полная (активная) мощность, потребляемая каждой цепью напряжения счетчика – не более 9,0 В•А (1 Вт)

при номинальном напряжении, нормальной температуре, номинальной частоте сети.

Полная мощность, потребляемая цепью тока — не более 0,1 В•А при базовом токе, нормальной температуре и номинальной частоте сети.

Основная абсолютная погрешность хода часов – не более \pm 0,5 с/сут.

Дополнительная погрешность хода часов при отсутствии напряжения в цепях напряжения – не более \pm 1,0 с/сут при нормальной температуре.

Предел дополнительной погрешности хода часов – не более \pm 0,15 c/(cyr $^{\circ}$ C) в диапазоне температур от минус 10 до 45 $^{\circ}$ C и не более \pm 0,2 c/(cyr $^{\circ}$ C) в диапазоне температур от минус 40 до 70 $^{\circ}$ C.

Пределы установки автоматической коррекции счета времени – от минус 5,35 до плюс 10,7 с/сут.

Время начального запуска – не более 5 с с момента подачи номинального напряжения.

Диапазон установки времени автоматической смены режимов индикации электроэнергии по тарифам и текущего времени на ЖКИ – от 3 до 255 с.

Длительность сохранения хода часов при отключенном питании – не менее 10 лет.

Длительность хранения накопленной информации при отключенном питании – не менее 30 лет.

Количество тарифов – до 8.

Количество тарифных программ для рабочих дней – 12.

Количество тарифных программ для субботних дней – 12.

Количество тарифных программ для воскресных дней – 12.

Количество тарифных программ для особых дней – 1.

Максимальный устанавливаемый интервал действия тарифной зоны – 24 ч.

Дискретность установки интервала действия тарифной зоны – 30 мин.

Скорость обмена через оптический порт – 2400 бит/с, 4800 бит/с, 9600 бит/с, для исполнения «J».

Формула передачи данных – 8 бит данных, без контроля четности, 1 стоповый бит.

Скорость обмена по интерфейсу RS-485 – 2400 бит/с, 4800 бит/с, 9600 бит/с, 14400 бит/с, 19200 бит/с, для исполнения «А».

Способ питания интерфейса RS-485 (для исполнения «А») – внешнее для корпуса R33 или от внутрен-

него источника для корпуса S31.

Напряжение питания интерфейса RS-485 – от 9 до 15 В, для исполнения «А», для корпуса R33.

Скорость обмена по радиоинтерфейсу – 2400 бит/с, для счетчиков исполнений «R1», «R2».

Тип разъема для подключения внешнего антенно-фидерного устройства – TNC или SMA, для счетчиков исполнений «R2».

Скорость обмена по низковольтной электрической сети (PLC-интерфейс) – до 360 бит/с, для счетчиков исполнений «Р».

Номинальное (максимальное) напряжение на выводах испытательного выходного устройства – 10 (24) В, постоянный ток.

Номинальная (максимальная) нагрузочная способность испытательного выходного устройства – 10 (30) мА, постоянный ток.

Номинальное (максимальное) коммутируемое напряжение на контактах реле сигнализации – 230 (265) В, постоянный ток или переменный ток, действующее значение, для исполнения «S».

Максимальная нагрузочная способность реле сигнализации – 0,1 A, постоянный ток или переменный ток, амплитудное значение, для исполнения «S» в корпусе R33 и 1 A, постоянный ток или переменный ток, действующее значение, для исполнения «S» в корпусе S31.

Сопротивление контактов реле сигнализации во включенном состоянии — не более 0,03 Ом для исполнения «S» в корпусе S31 и не более 45 Ом для исполнения «S» в корпусе R33.

Сопротивление контактов реле сигнализации в выключенном состоянии – не менее 1 МОм для исполнения «S».

Средняя наработка до отказа – 160000 ч. с учетом технического обслуживания.

Средний срок службы – 30 лет.

Габаритные размеры — не более $210,5 \times 175 \times 71,5$ мм в корпусе S31, не более $143 \times 151,5 \times 72,5$ мм в корпусе R33.

Масса – не более 1,0 кг в корпусе R33 и не более 2,0 кг в корпусе S31.

Пределы допускаемых значений основной относительной погрешности приведены в таблице 3.1.

Таблица 3.1

Значение силы тока	Коэффициент мощности	Пределы допускаемой основной погрешности, %	
$0.05I_{6} \le I < 0.10I_{6}$	1	±1,5	
$0,10I_{6} \le I \le I_{MAKC}$		±1,0	
0,10 <i>I</i> ₆ ≤ <i>I</i> <0,20 <i>I</i> ₆	0,5 (инд)	±1,5	
	0,8 (емк)		
0,201 ₆ ≤1≤1 _{макс}	0,5 (инд)	±1,0	
	0,8 (емк)		

При напряжении ниже 0,7 от номинального для счетчиков в корпусах R33 или при напряжении ниже 0,75 от номинального для счетчиков в корпусах S31, погрешность находится в пределах от 10 до минус 100 %.

При разомкнутой цепи тока и значении напряжения равном 1,15 номинального значения испытательное выходное устройство счётчика не создает более одного импульса в течение времени Δt , мин., вычисленного по формуле:

$$\Delta t \ge \frac{600 \cdot 10^6}{3 \cdot k \cdot U_{HOM} \cdot I_{MAKC}}$$

k – постоянная счетчика (число импульсов импульсного выходного устройства счетчика на 1 кВт·ч), имп./(кВт·ч);

 U_{HOM} — номинальное напряжение, В; I_{MAKC} — максимальная сила тока, А.

4 ПОДГОТОВКА СЧЕТЧИКА К РАБОТЕ

После распаковывания произвести наружный осмотр счетчика, убедиться в отсутствии механических повреждений, проверить наличие и сохранность пломб.

Габаритные и установочные размеры счетчиков для конкретного типа корпуса приведены в приложении Б. Крышка корпуса счетчика должна быть опломбирована двумя пломбами (Госповерителя и ОТК).

Примечание – При выпуске счетчика на предприятии-изготовителе используется пломбировочный материал «Силвайр LG9», представляющий собой пластиковую леску, обвитую тонкой стальной проволокой. В процессе эксплуатации, при проведении ремонтов, очередных или внеочередных поверок счетчика может использоваться медная пломбировочная проволока.

ВНИМАНИЕ! НАЛИЧИЕ НА ОТСЧЕТНОМ УСТРОЙСТВЕ ПОКАЗАНИЙ ЯВЛЯЕТСЯ СЛЕДСТВИЕМ ПО-ВЕРКИ СЧЕТЧИКА НА ПРЕДПРИЯТИИ-ИЗГОТОВИТЕЛЕ, А НЕ СВИДЕТЕЛЬСТВОМ ЕГО ИЗНОСА ИЛИ ЭКСПЛУАТАЦИИ.

Подключить счетчик для учета электроэнергии к трехфазной четырехпроводной сети переменного тока. Для этого снять клеммную крышку и подключить подводящие провода, закрепив их в клеммах колодки в соответствии со схемой включения, нанесенной на обратной стороне крышки. Маркировка контактов клеммной колодки и схемы включения приведены в приложении В.

При монтаже счетчика провод (кабель) необходимо очистить от изоляции примерно на величину, указанную в таблице 4.1. Зачищенный участок провода должен быть ровным, без изгибов. Вставить провод в клеммный зажим без перекосов.

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ ПОПАДАНИЕ В ЗАЖИМ УЧАСТКА ПРОВОДА С ИЗОЛЯЦИЕЙ, А ТАК-ЖЕ ВЫСТУП ЗА ПРЕДЕЛЫ КОЛОДКИ ОГОЛЕННОГО УЧАСТКА.

Сначала затянуть верхний винт. Легким подергиванием провода убедиться в том, что он зажат. Затем затянуть нижний винт. Через 5 мин. подтянуть соединение еще раз.

Диаметр подключаемых к счетчику проводов указан в таблице 4.1.

Таблица 4.1

Базовый (максимальный) ток счетчика, А	Длина зачищаемого участка провода, мм	Диаметр провода, мм
5 (60)	25	1,6 - 6,0
10 (100)	27	2,0 - 8,0

При подаче напряжения на счетчик должен зажечься светодиод «Сеть» на лицевой панели и происходит тестовое включение всех сегментов ЖКИ счетчика (рисунок 7.1).

Проверить работу кнопок «Кадр» и «Просмотр», поочередно нажав на них, не прилагая больших усилий, и убедиться, что происходит смена отображаемой на ЖКИ информации.

Счетчики, выпускаемые предприятием-изготовителем, имеют заводские установки согласно перечню программируемых параметров, приведенных в формуляре.

Обозначения контактов на клеммной колодке для подключения импульсных выходов, реле сигнализации, реле управления нагрузкой и интерфейсов для конкретного типа корпуса представлены на сайте www.energomera.ru в справочном документе «Дополнительные сведения о счётчиках серии СЕ 301М».

5 ИНТЕРФЕЙСЫ СЧЕТЧИКОВ

Подробные описания интерфейсов и схемы их подключения для конкретного типа корпуса представлены на сайте www.energomera.ru в справочном документе «Дополнительные сведения о счётчиках серии CE 301M».

6 СБРОС СОСТОЯНИЯ ЭЛЕКТРОННОЙ ПЛОМБЫ (ДЛЯ СЧЕТЧИКОВ ИСПОЛНЕНИЯ «V»)

После установки и опломбирования клеммной крышки счетчика (крышка должна быть установлена плотно, без перекосов) необходимо произвести сброс состояния электронной пломбы. Для этого нужно подключиться к счетчику по любому из предусмотренных интерфейсов с помощью программы

«AdminTools». После подключения необходимо произвести чтение журнала несанкционированного доступа, после чего знак « 🔓 » на ЖКИ должен исчезнуть.

Примечание – Наличие значка вскрытия клеммной крышки « ♠ » на ЖКИ счетчика никак не влияет на характеристики счетчика в плане учета электроэнергии и не связано с какой-либо неисправностью счетчика. Отсутствие сброса значка электронной пломбы просто не позволяет в дальнейшем отслеживать по журналу событий счетчика факты вскрытия клеммной крышки счетчика.

7 ОТОБРАЖЕНИЕ ИНФОРМАЦИИ НА ЖКИ

ЖКИ используется для отображения измеренных и накопленных величин, вспомогательных параметров и сообщений.

Показания тарифных накопителей, их суммы, а также текущего времени на ЖКИ счетчика автоматически изменяются через установленный промежуток времени, но не менее чем через 3 с. Для переключения индикации между этими режимами необходимо нажать на кнопку «КАДР». Для просмотра дополнительной информации в ручном режиме необходимо нажимать на кнопку «ПРОСМОТР».

Общий вид ЖКИ счетчика приведен на рисунке 7.1.

ВНИМАНИЕ! ОТОБРАЖЕНИЕ ИНФОРМАЦИИ НА ЖКИ ПРОИСХОДИТ ТОЛЬКО ПРИ НАЛИЧИИ НО-МИНАЛЬНОГО НАПРЯЖЕНИЯ В ЦЕПИ НАПРЯЖЕНИЯ СЧЕТЧИКА.

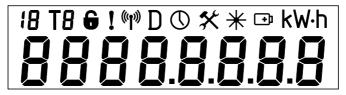


Рисунок 7.1 – Общий вид ЖКИ счетчика в режиме теста

Назначения цифр, знаков и указателей (слева направо):

– указатель глубины просмотра накопленных данных на конец месяца;

- индикация номера действующего тарифа при индикации текущего времени или указание соответствующего тарифного накопителя;

– индикация несанкционированного вскрытия клеммной крышки;

- индикация срабатывания реле сигнализации;

- индикатор обмена по интерфейсу;

– указатель режима индикации даты;

– указатель режима индикации времени;

🗶 — указатели статуса действующей тарифной программы:

+1 – индикатор необходимости замены батареи;

kW-h – указатели энергии в киловатт-часах;

kW – мощность в киловаттах;

8888888

– значения тарифных накопителей, мгновенной мощности, времени или даты в зависимости от режима индикации, обозначаемого соот ветствующими знаками.

8 РЕЖИМЫ ИНДИКАЦИИ

Режим автоматической смены индикации приведен на рисунке 8.1.

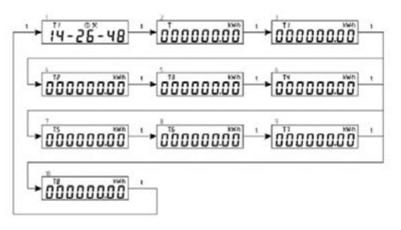


Рисунок 8.1 – Режим автоматической смены индикации счетчика

На рисунке 8.1:

- 1 индикация времени, при этом индицируется номер действующего тарифа (**T1**) и тип тарифной программы (**X** рабочая);
 - 2 индикация текущей суммы по задействованным тарифам с указанием единиц измерения (kW•h);
 - 3 индикация электроэнергии, учтенной по тарифу 1 (**T1**) с указанием единиц измерения (**kW•h**);
 - 4 индикация электроэнергии, учтенной по тарифу 2 (T2) с указанием единиц измерения (kW•h);
 - 5 индикация электроэнергии, учтенной по тарифу 3 (**Т3**) с указанием единиц измерения (**kW•h**);
 - 6 индикация электроэнергии, учтенной по тарифу 4 (**T4**) с указанием единиц измерения (**kW•h**);
 - 7 индикация электроэнергии, учтенной по тарифу 5 (T5) с указанием единиц измерения (**kW-h**);
 - 8 индикация электроэнергии, учтенной по тарифу 6 (**T6**) с указанием единиц измерения (**kW•h**);
 - 9 индикация электроэнергии, учтенной по тарифу 7 (**T7**) с указанием единиц измерения (**kW•h**);
 - 10 индикация электроэнергии, учтенной по тарифу 8 (**Т8**) с указанием единиц измерения (**kW•h**).

Примечание – Отображение учтенной электроэнергии по тарифам T2 – Т8 происходит при присутствии данного тарифа в тарифной программе счетчика. При учете электроэнергии только по одному тарифу, текущая сумма по задействованным тарифам не отображается.

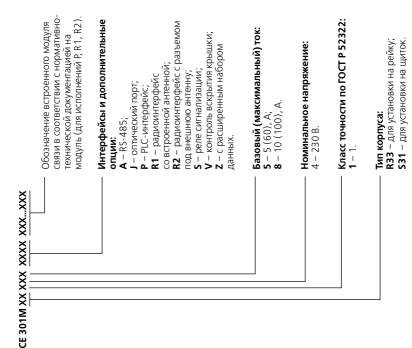
Более подробное описание режимов индикации для конкретного типа счетчика представлено на сайте www.energomera.ru в справочном документе «Дополнительные сведения о счётчиках серии СЕ 301М».

9 ПОВЕРКА ПРИБОРА

Поверка счетчика проводится при выпуске из производства, после ремонта и в эксплуатации в соответствии с документом «Счетчик активной электрической энергии трехфазный СЕ 301М. Методика поверки САНТ.411152.024Д1», утвержденным ФГУП «ВНИИМС».

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание счетчика в местах установки заключается в систематическом наблюдении за его работой, своевременной замене литиевого элемента и, при необходимости, программировании тарифных программ.


Периодическая поверка счетчика проводится в объеме, изложенном в разделе 9 настоящего руководства, один раз в 16 лет или после среднего ремонта.

ВНИМАНИЕ! ПРИ НЕСВОЕВРЕМЕННОЙ ЗАМЕНЕ ЛИТИЕВОГО ЭЛЕМЕНТА СЧЕТЧИК МОЖЕТ ПРЕ-КРАТИТЬ УЧЕТ ТЕКУЩЕГО ВРЕМЕНИ И ДАТЫ ПРИ СОХРАНЕНИИ НАКОПЛЕННОЙ ИНФОРМАЦИИ. ВЫПОЛНЕНИЕ ПРИ ЭТОМ ДРУГИХ ФУНКЦИЙ В ПОЛНОМ ОБЪЕМЕ НЕ ГАРАНТИРУЕТСЯ.

приложение А

(обязательное)

Структура условного обозначения

ПРИЛОЖЕНИЕ Б

(обязательное)

Габаритные и установочные размеры счетчиков

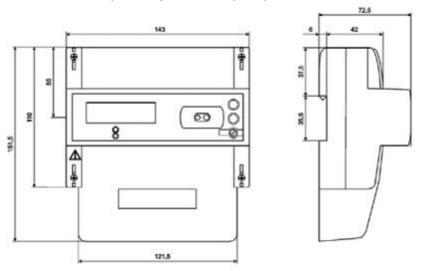


Рисунок Б.1 – Габаритные и установочные размеры счетчика CE 301M R33

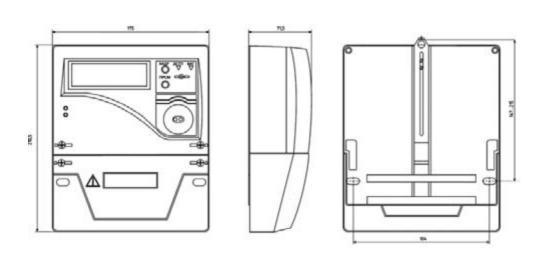
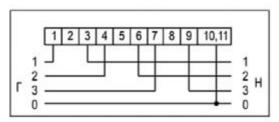



Рисунок Б.2 – Габаритные и установочные размеры счетчика CE 301M S31

ПРИЛОЖЕНИЕ В

(обязательное)

Маркировка схемы включения счетчиков

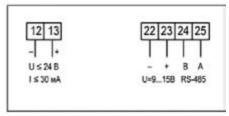
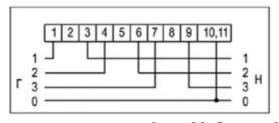



Рисунок В.1 – Тип корпуса R33 исполнение A

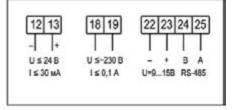


Рисунок В.2 – Тип корпуса R33 исполнение AS

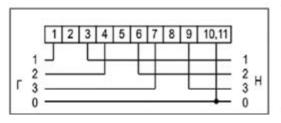
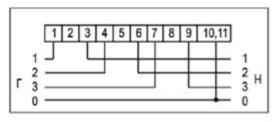



Рисунок В.3 – Тип корпуса S31 исполнения P, R1

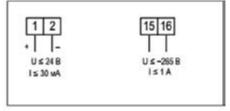
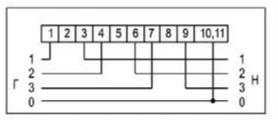



Рисунок В.4 – Тип корпуса S31 исполнения PS, R1S

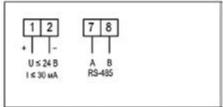
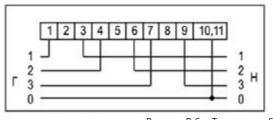



Рисунок В.5 – Тип корпуса S31 исполнение A

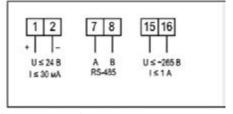


Рисунок В.6 – Тип корпуса S31 исполнение AS

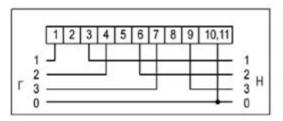
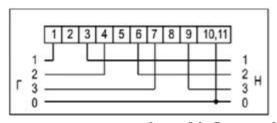



Рисунок В.7 – Тип корпуса S31 исполнение R2

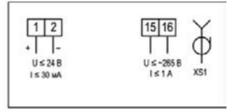


Рисунок В.8 – Тип корпуса S31 исполнение R2S